The goal of this note is to present an upper bound on
a(Gy X -+ X Gy,) which depends only on a(G.), ", a(Gm)-
In the next section we shall present the best possible such
upper bound and show that the bound remains sharp
when the factors G; are all isomorphic. This is the case of
importance for the study of zero-error probability codes.

3. Main Results
TaeOREM 1

a(Gy X - XGm)éM(a1+l,cxz+1,"',am+1)‘1
where a; = a(Gi).

Proof: Let X be a subset of Gy X -+ - X Gn of size
a(Gy X - - - X Gp) such that no two vertices of X are
comnected in Gy X + - * X Gp. Thus, if x = (%1, * * * ,%m)
and y = (41, - - * »Ym) are vertices from X, there will be
at least one index i for which x; = y; and x; and y; are not
connected in Gy. Let us color the complete graph whose
vertex set is X as follows: the edge joining x and y is
colored with the ith color if i is the smallest index for
which x; 54 y; and x; and y; are not connected in G;. Now
if a(Gi X" XGu) =M.+ 1, ,amt 1), then by
Ramsey’s theorem, we conclude that for some index i,
there exists a complete (a; + 1)-subgraph of the ith color.
But this would imply the existence of a; + 1 vertices in
G, no two of which were connected, in conflict with the
definition of « (G;). Theorem 1 is proved.

Tieorem 2. Given integers aj, ez, ° * " om; there exist
graphs Gi, Go, - - -, G such that « (G;) = «; and
a(G1>< st XGm)ZM(a1+1, A ,am,+1)—'1.

Proof. From the definition of the Ramsey Number
M(as+ 1, - - ,am+ 1) =M we know that there is a
coloring of the complete M — 1 graph in m colors such
that the largest complete i-colored subgraph is on a; nodes,
for all i. For each i, let G; be the graph on these M — 1
vertices which includes all edges which are, in fact, not
colored with the ith color; thus «(G;) = e;. But it is easy
to see that in Gy X + - - X Gy, the diagonal [i.e., the set
of vertices of the form (x,%, - - - ,x)] is completely dis-
connected; if the edge connecting x and y is of the ith
color, then (x,x, - - - ,%) and (y,y, - - - ,y) are not con-
nected in the ith component and so not connected in
G X - X G Thus a(Gy X -+ XGn)=M— 1L
But Theorem 1 forces « (G: X -+ - X Gu)=M — 1, and
so equality holds. This proves Theorem 2.

TreoreM 3. Given integers @ and m, there exists a graph G
with a(G) = « and a(G"=M(a+1, - ,a-+1)— L

Proof. We begin with the graphs G; as constructed in the
proof of Theorem 2. Let G be the graph which consists of
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one copy each of Gy, Gz, . - . » G, With every vertex
from G, connected to every vertex in G; if i47. Then
dearly «(G) = a. Also, G X G X -+ X G contains a
subgraph isomorphic to Gy X * * * X G, and so «(G™)
>e(G, X -+ X Gn) =M — 1. Again, a(G™") =M — 1
follows from Theorem 1. Theorem 3 is proved.

4. Discussion

While in one sense these theorems completely settle the
question of giving bounds for a (G, X + - - X G) in terms
of the «(G;), in another sense much is left to be desired,
since most of the Ramsey Numbers are unknown. Thus,
the only known nontrivial Ramsey Numbers are

M(3,3) =6, M(3,4) =9, M(35) =14, M(36) =18,
M(3,7) =23

M(4,4) =18
M(3,3,3) =17

However, there are a variety of weak upper bounds
known, the easiest to work with being M (e, 8) = (2:8:2).
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D. Combinatorial Communication: An Upper

Bound on the Free Distance of a Tree Code,
1. Layland and R. McEliece

1. Introduction

In SPS 37-50, Vol. III, pp. 248-252, McEliece and
Rumsey obtained an upper bound on the free distance of
a systematic convolutional code of rate 1/v, where v is a
positive integer. In this note we will modify that argu-
ment slightly and obtain an upper bound on the free dis-
tance of an arbitrary tree code of finite memory, systematic
or not. The bounds obtained are exactly the same as those
for convolutional codes with the same parameters. These
upper bounds provide strong evidence that nonsystematic
codes have considerably larger free distance than system-
atic codes. This is one reason why nonsystematic codes
will be used in upcoming projects. In Subsection 3, we
point out that the so-called Griesmer bound for linear
codes can sometimes be used to tighten these bounds for
convolutional codes. Finally in Subsection 4 we present
a short table of the bounds for particular values of the
parameters.
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2. The Bound

A rate k/n, constraint length K (memory K — 1) binary
tree code can be described as follows: If the informa-
tion stream is partitioned into blocks of k bits each, say
I=(I®,I®, - - @, IO, 1@, - - - @, I, - -0,
then the output of the encoder is a sequence of blocks of n
bits each, C=(C®,C®, - - - ,C™,CM,CP, - - - ,CM,
cw,---).

Here C{” depends only on the information symbols I{*}
fors=0,1,- - ,K—1¢t=12, - -k The free dis-
tance of this code is defined as the minimum Hamming
distance between two of the (infinite) code words C.

Let T represent the set of all code words in the tree
code, and T} represent those code words corresponding to
information streams which have I{» = 0 for i > h. Clearly
donin (T) = dmin (T1) for all A=1. On the other hand T
can be thought of as a block code of lengthn(h + K — 1),
since for i =h + K, C¢ depends only on I for / =h+1,
and these information bits are all zero.

Now according to Plotkin’s bound (Ref. 1, Theorem
13.49), a code of length n with M code words has mini-
mum distance =n/(2 (1/1 — M-)). Since T has block
length n (h -+ K — 1) and 2" code words, we arrive at

TueoreMm 1

df,ee(T)én(h+2K—1)( i )

P allh=1

We conclude this section by discussing systematic tree
codes. The code is said to be systematic if C{ = I{) for
1=j=k. Notice that in T}, this means that C{” =0 for
i>h+1,1=j=k so that k(K—1) of then(h+K—1)
code word positions are identically zero. This reduces the
effective block length of T, and we obtain

TueoreM 2. If T is systematic

nh+K—1)—k(K—1)( 2%
dfree (T')é 2 (2hk — 1)

allh=>1

3. Improvement for Linear {Convolutional) Codes

If the code is linear, then the codes T} are also, and
instead of Plotkin’s bound, we may use Griesmer’s bound
(Ref. 2), which improves Plotkin’s slightly. Griesmer's
bound says that if d = d, is the minimum distance of an
(n, k) binary linear code, and if d; = [(d;-, + 1)/2], then
d,+d, + - - - + di,=n. For example, consider a rate
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1/2, K = 6 convolutional code. Here T is a (16,3) block
code which has dy;. = 9 by Plotkin’s bound. Butifd, = 9,
then d, =5, d; =3 and 9+ 5+ 3 =17 > 16, so that no
linear (16,3) code can have dnix = 9. Thus a rate 1/2,
K = 6 convolutional code must have d¢.. =8. Inciden-
tally, this example suggests the interesting possibility that
a nonlinear tree code might have dr.e = 9, which would
then be superior to any linear tree code.

4. A Short Table

We present in this section a short table of the upper
bounds obtained by the arguments in this paper for non-
systematic tree codes (Table 2). The only rates considered
are 1/2, 1/3, and 1/4. Column P is the Plotkin upper
bound of Subsection 2, and columm G lists the Griesmer
upper bound of Subsection 3, whenever it is superior to
the Plotkin Bound. The last column L gives the best di:..
known to be achievable by a convolutional code.
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Table 2. Upper bounds

‘ Rate 1/2 Rate 1/3 Rate 1/4
Pl 6 L P 6 L Pl 6 L

2 4 3 6 5 8 7
3 5 5 8 g | 10 10
4 6 6 | 10 0| 13 13
5 8 7 {12 12 | 16 16
6 9 8 g8 | 13 13 | 18 18
7 | 10 10 |15 15 | 20 20
8 | 1 100} w7 | 16| 16 | 22
g | 12 12 | 18 18 ] 251 24 | 24

10| 13 12 | 20 20 | 27

o] 14 12 | 22 29

12 | 16 13 | 24 22 | 32

1B 7] e 25 | 24 34 | 33

4 [ 1| 7 27 | 26 36

151 19| 18 28 38

E. Combinatorial Communications: Epsilon

Entropy and Data Compression,
E. Posner and E. Rodemich

1. Introduction

The theory of efficient handling of data for transmission
or storage is presently known as “data compression.” As
space exploration progresses to more and more distant
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